High Temperature Heat Pumps in Japan - Potential, Development Trends, and Case Studies -

<u>Takenobu Kaida</u>

Central Institute of Electric Power Industry (CRIEPI), Energy Innovation Center (ENIC), Yokosuka, Japan, kaida@criepi.denken.or.jp

Keywords: High temperature heat pump, Potential, Development trend, Case study, Distillation process

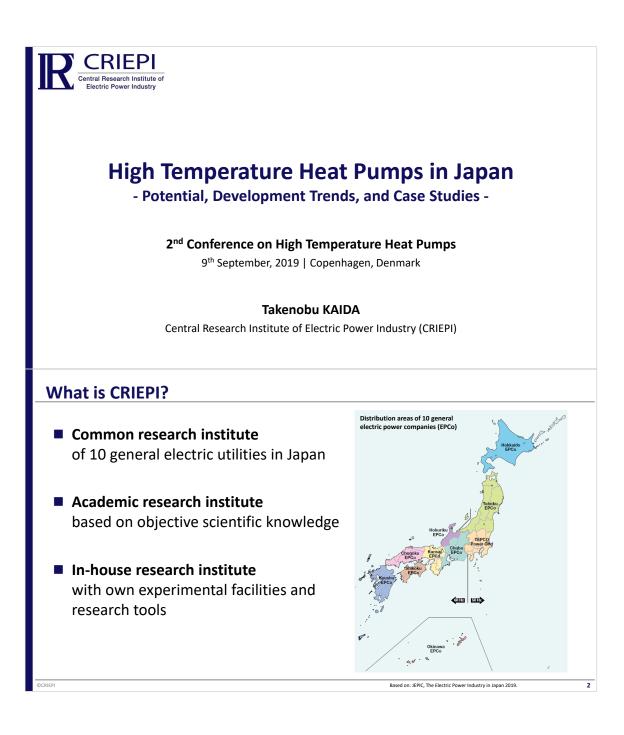
Abstract

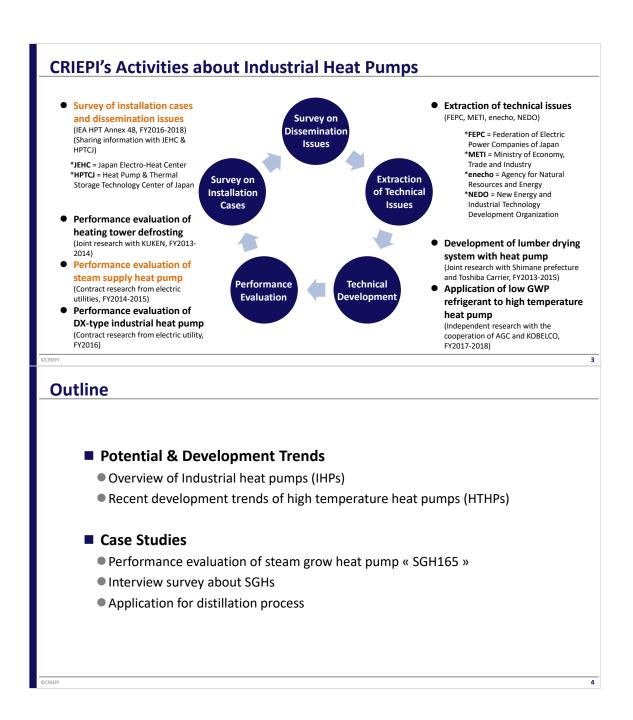
For significant reduction of greenhouse gas emissions, it is important to decrease the emission factor of electricity, to electrify heat usage, and to use electricity with high efficiency. In particular, industrial sector has much potential for electrifying heat usage and for reducing greenhouse gas emissions. Heat pump is recognized as one of the key technologies for the industrial electrification.

When focusing on steam demand and hot water demand for heat pump application, it is reported that the heat demand between 50°C and 150°C is estimated at 300 PJ/year in Japan [1]. The Japanese Government expects the cumulative shipments of industrial heat pumps achieve the heating capacity of 1,673 MW by FY2030 compared to the actual cumulative shipments of 11 MW in FY2013 [2]. The effect is estimated at 1.35 million ton- CO_2 reduction.

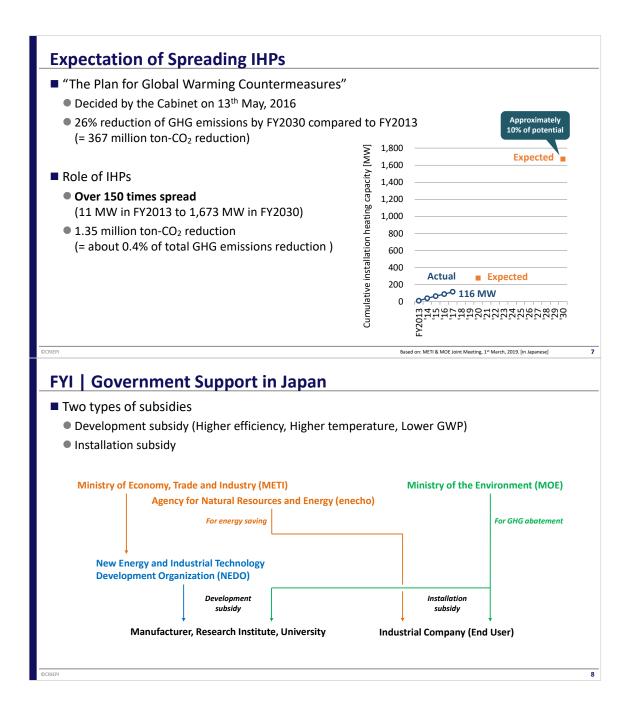
In recent years, various types of industrial heat pumps have been developed and commercialized in Japan [3]. When focusing on high temperature heat pumps (HTHPs) over 100°C, the following 5 products are available in the market; a hot air supply heat pump (Eco Sirocco) by MAYEKAWA, steam supply heat pumps (SGH120 and SGH165) by KOBELCO, a pressurized hot water supply heat pump (ETW-S) by MHI Thermal Systems, and a steam supply heat pump by Fuji Electric. KOBELCO has already prepared the product line-up up to 165°C. Fuji Electric, MAYEKAWA and MHI Thermal Systems prepared HTHPs around 120°C and are developing HTHPs over 150°C by NEDO projects [4].

Generally, coefficient of performance (COP) of heat pump becomes smaller as increasing supply temperature. It depends on the price and emission factor of electricity how much COP is necessary for customer's benefit. Today, in Japan, the emission factor of electricity is about 0.5 kg-CO₂/kWh [5] and the price ratio of electricity to city gas is about 2.8 [6]. These values make a little difficult for applying HTHPs.

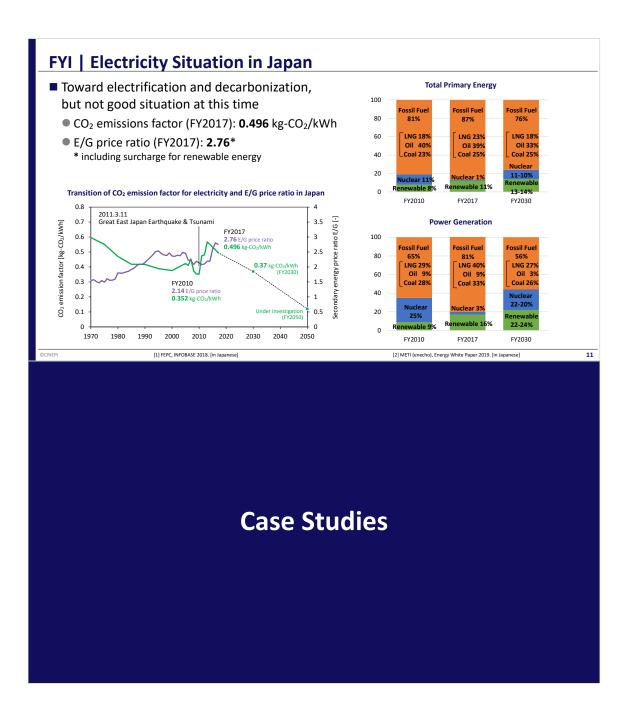

The author has performed the experimental performance evaluation of the SGH165 [7]. The performance data were acquired under various conditions on the assumption of actual conditions. As well as extracting technical issues, the competitive condition was clarified compared to existing boiler

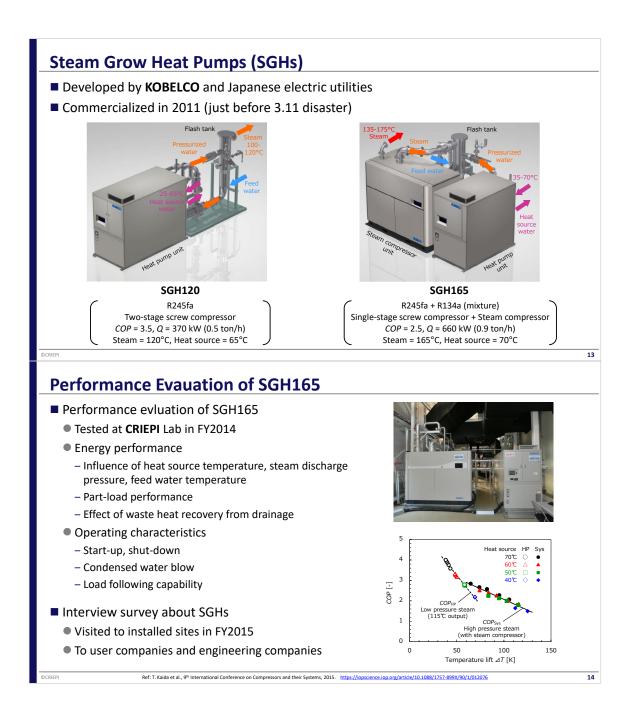

system. In addition, the author visited installed sites of SGHs and conducted interview survey to user companies and engineering companies about application of steam supply heat pumps. The effects by applying SGHs were as planned or better than planned, so the users satisfied them and had no additional requests to the heat pumps. The engineering companies recognized the good operability of the heat pumps. But for applying it furthermore, they request higher COP and lower initial cost.

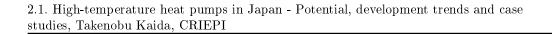

As examples of good practices, two case studies for applying heat pumps to distillation processes are shown in this presentation. Existing distillation column for ethanol or methanol needs the temperature above 100°C. The first case applied 120°C steam supply heat pump for ethanol distillation [8]. The effects were 43% CO₂ reduction and 54% energy cost reduction. On the other hand, the second case applied 90°C hot water supply heat pump for methanol distillation [9]. This could be realized by decompression of distillation column to vacuum pressure. The effects were 60% CO₂ reduction and 63% energy cost reduction. In this way, decreasing heat demand temperature by changing process shows the better effectiveness of heat pump and gives the more opportunity of heat pump even when electricity situation is not so good economically and environmentally like at this time in Japan.

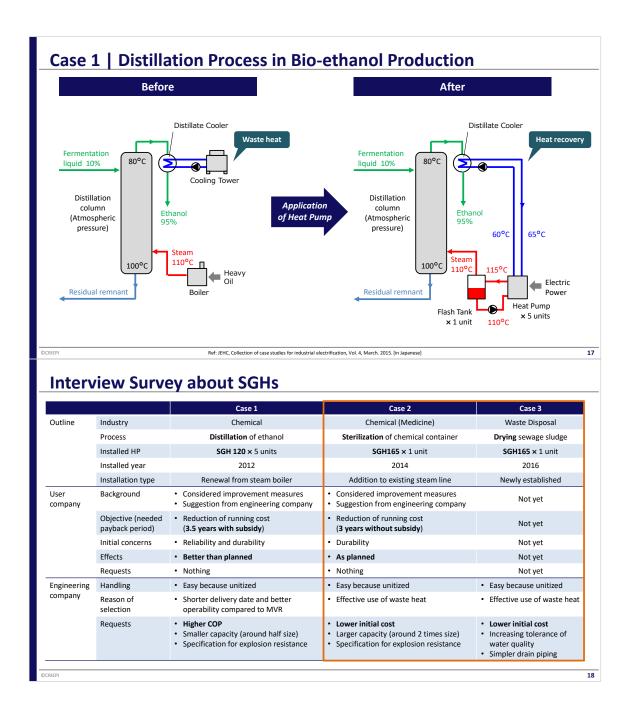

In conclusions, toward electrification and decarbonisation for future, both higher temperature heat pump for extending the territory of heat pump application and process innovation for shifting heat demand to lower temperature are important realistically for spreading industrial heat pumps.

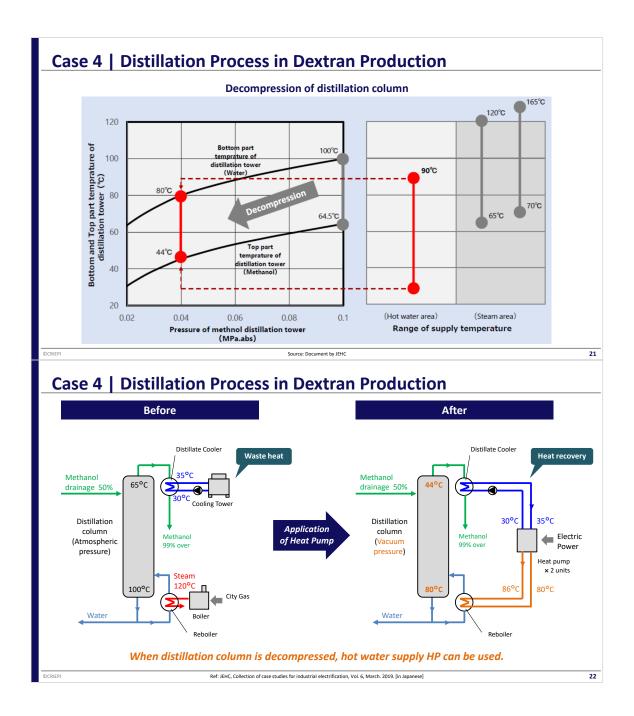
- MRI, Survey report on heat demand and supply equipment, commissioned by enecho, February, 2018. [in Japanese] <u>https://www.meti.go.jp/meti_lib/report/H29FY/000018.pdf</u>
- [2] MOE, The Plan for Global Warming Countermeasures, decided by the Japanese Cabinet on 13th May, 2016. <u>http://www.env.go.jp/en/headline/2238.html</u>
- [3] JEHC, Guideline for use of industrial heat pump, March, 2017. [in Japanese] <u>http://www.jeh-center.org/asset/00032/HeatPump_Guide/Heatpump%20Guide.pdf</u>
- [4] NEDO, ENEX 2019, February, 2019. [in Japanese] <u>https://www.nedo.go.jp/content/100891001.pdf</u> <u>https://www.nedo.go.jp/content/100891002.pdf</u>
- [5] FEPC, INFOBASE 2018. [in Japanese] https://www.fepc.or.jp/library/data/infobase/
- [6] METI, Energy White Paper 2019. https://www.enecho.meti.go.jp/en/category/whitepaper/
- [7] T. Kaida et al., Experimental performance evaluation of heat pump-based steam supply system, 9th International Conference on Compressors and their Systems, London, September, 2015. <u>https://iopscience.iop.org/article/10.1088/1757-899X/90/1/012076</u>
- [8] JEHC, Collection of case studies for industrial electrification, Vol. 4, March, 2015. [in Japanese] <u>http://www.jeh-center.org/asset/00032/monodukurinidenki/vol4_hokkaidobaioetanoru.pdf.pdf</u>
- [9] JEHC, Collection of case studies for industrial electrification, Vol. 6, March, 2019. [in Japanese] <u>http://www.jeh-center.org/asset/00032/monodukurinidenki/vol6_meitousangyou.pdf</u>

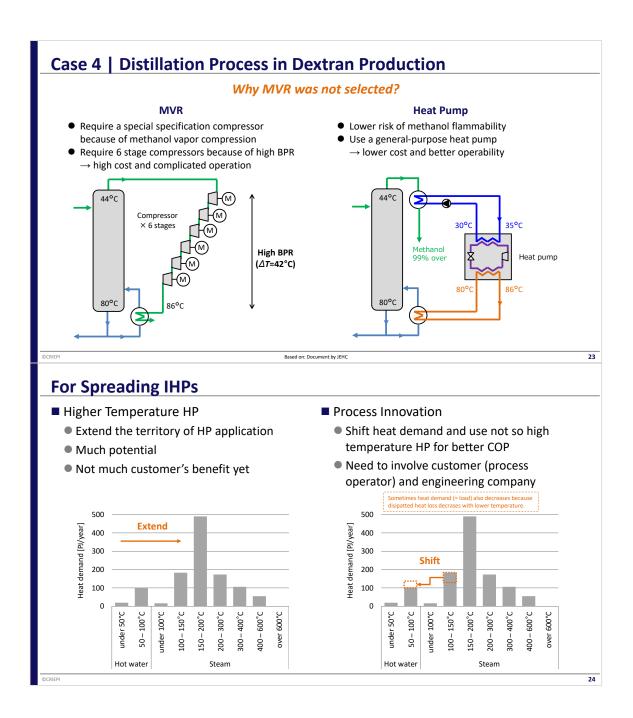


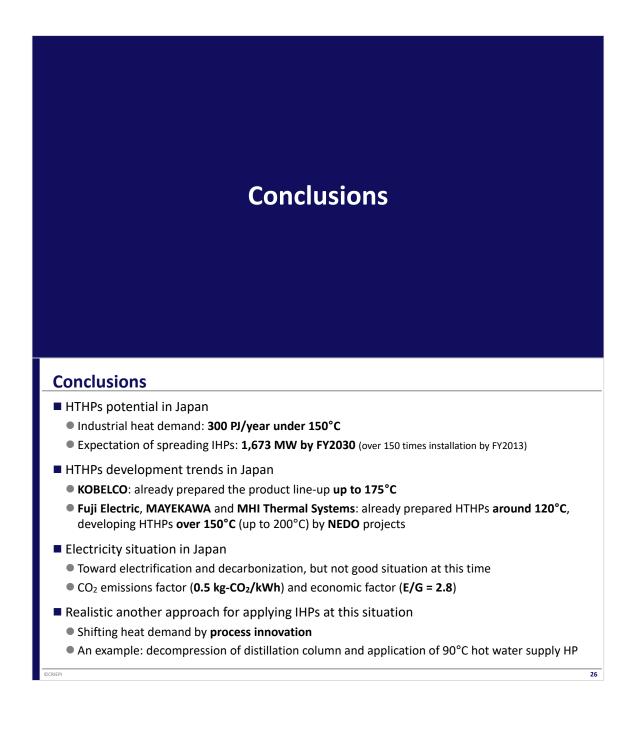





	zed HTHPs				
	MAYEKAWA	KOBELCO	KOBELCO	MHI Thermal Systems	Fuji Electric
External Appearance					
Commercialized Year	2009	2011	2011	2011	2015
Product Name	Eco Sirocco	SGH120	SGH165	ETW-S	_
Heat Source/Sink	Water/Air	Water/Steam	Water/Steam	Water/Water	Water/Steam
Supply Temperature	60- 120 °C	100- 120 °C	135- 175 °C	130 °C	100- 120 °C
eat Source Temperature	0-40°C	25-65°C	35-70°C	55°C	60-80°C
Heating Capacity (Steam Rate)	110 kW*1	370 kW ^{*2} (0.51 ton/h)	624 kW ^{*3} (0.89 ton/h)	627 kW ^{*4}	30 kW*5 (45 kg/h)
СОР	3.7*1	3.5 ^{*2}	2.5*3	3.0*4	3.5*5
Refrigerant	R744 (CO ₂)	R245fa	R245fa+R134a	R134a	R245fa
Compressor	Reciprocating	Screw	Screw	Centrifugal	Reciprocating
Heat Pump Cycle	Transcritical	Subcritical	Subcritical + Steam Compression	Transcritical	Subcritical
1		Based on: Manufact	urers' brochure		
ecent Natio	onal R&D P			150°C	
Recent Nation NEDO Projects Program for S	trategic Innovati	rojects for H	THPs over	150°C	
Accent Nation NEDO Projects Program for Single Accent Sing	trategic Innovati heat pump (Fuji I	rojects for H ve Energy Saving Electric, FY2015-FY	TECHNOLOGY		TherMAT)
Accent Nation NEDO Projects Program for Si - Steam supply R&D Project for	trategic Innovati heat pump (Fuji I or Innovative Th	rojects for F ve Energy Saving Electric, FY2015-FY ermal Manageme	THPs over Technology (2018) ent Materials and		herMAT)
 R&D Projects Program for S Steam supply R&D Project for – High tempera 	trategic Innovati heat pump (Fuji I or Innovative Th iture heat pump (I	rojects for I ve Energy Saving Electric, FY2015-FY ermal Managem MAYEKAWA, FY20	THPs over Technology (2018) ent Materials and	l Technologies (1	herMAT)
NEDO Projects Program for S Steam supply R&D Project for High temperation 	trategic Innovati heat pump (Fuji I or Innovative Th iture heat pump (I	rojects for I ve Energy Saving Electric, FY2015-FY ermal Managem MAYEKAWA, FY20 MHI Thermal Syste	Technology (2018) ent Materials and 15-FY2022)	l Technologies (1	
NEDO Projects Program for S Steam supply R&D Project for High temperation 	trategic Innovati heat pump (Fuji F or Innovative The ture heat pump (I ture heat pump (I Fuji Elect	rojects for I ve Energy Saving Electric, FY2015-FY ermal Managem MAYEKAWA, FY20 MHI Thermal Syste	Technology (2018) ent Materials and 15-FY2022) ems, FY2015-FY202	l Technologies (1 22)	
 A contract of the second second	trategic Innovati heat pump (Fuji E or Innovative The ture heat pump (I ture heat pump (I Fuji Elect ure 150° C	rojects for F ve Energy Saving Electric, FY2015-FY ermal Manageme MAYEKAWA, FY20 MHI Thermal Syste ric M 160°C	Technology (2018) ent Materials and 15-FY2022) ems, FY2015-FY202	I Technologies (1 22) MHI Therma	ıl Systems
NEDO Projects Program for S – Steam supply R&D Project fo – High tempera – High tempera	trategic Innovati heat pump (Fuji E or Innovative The iture heat pump (I iture heat pump (I Fuji Electi ure 150 °C rature 70-90°C	rojects for H ve Energy Saving Electric, FY2015-FY ermal Manageme MAYEKAWA, FY20 MHI Thermal Syste ric M 160°C	Technology (2018) ent Materials and 15-FY2022) ems, FY2015-FY202 AYEKAWA 200°C	l Technologies (1 22) MHI Therma 160°C	il Systems 200°C
NEDO Projects Program for S – Steam supply R&D Project fo – High tempera – High tempera Supply Temperat Heat Source Tempe	trategic Innovati heat pump (Fuji E or Innovative The iture heat pump (I iture heat pump (I Fuji Electi ure 150 °C rature 70-90°C	ve Energy Saving Electric, FY2015-FY ermal Managem MAYEKAWA, FY20 MHI Thermal Syste ric M 160°C 2 80°C	Technology (2018) ent Materials and 15-FY2022) ems, FY2015-FY202 AYEKAWA 200°C	I Technologies (T 22) MHI Therma 160°C 80°C	il Systems 200°C
NEDO Projects Program for S - Steam supply R&D Project fo - High tempera - High temperat Supply Temperat Heat Source Tempe Heating Capacit	trategic Innovati heat pump (Fuji F or Innovative The ture heat pump (I ture heat pump (I Fuji Elect ure 150° C rature 70-90°C ty 30 kW	rojects for H ve Energy Saving Electric, FY2015-FY ermal Managem MAYEKAWA, FY20 WHI Thermal Syste ric M 160°C : 80°C : 80°C : 300 kW ≥ 3.5	Technology (2018) ent Materials and 15-FY2022) ems, FY2015-FY202 AYEKAWA 200°C 100°C 100°C	I Technologies (1 22) MHI Therma 160°C 80°C 600 kW	al Systems 200°C 100°C —
NEDO Projects Program for S Steam supply R&D Project fo High tempera High tempera Supply Temperat Heat Source Tempe Heating Capacit Target COP	trategic Innovati heat pump (Fuji E or Innovative The ture heat pump (I ture heat pump (I Fuji Elect ure 150°C rature 70-90°C ty 30 kW ≥ 3.3	rojects for H ve Energy Saving Electric, FY2015-FY ermal Managem MAYEKAWA, FY20 WHI Thermal Syste ric M 160°C : 80°C : 80°C : 300 kW ≥ 3.5	Technology (2018) ent Materials and 15-FY2022) ems, FY2015-FY202 AYEKAWA 200°C 100°C 100°C	I Technologies (1 22) MHI Therma 160°C 80°C 600 kW ≥ 3.5	al Systems 200°C 100°C —
NEDO Projects Program for S – Steam supply R&D Project fo – High tempera – High tempera Supply Temperat Heat Source Tempe Heating Capacit Target COP Refrigerant	trategic Innovati heat pump (Fuji B or Innovative The iture heat pump (I iture heat pump (I Fuji Elect ure 150° C rature 70-90°C ty 30 kW ≥ 3.3 R1336mzz Scroll	rojects for I ve Energy Saving Electric, FY2015-FY ermal Managem MAYEKAWA, FY20 MHI Thermal Syste ric M 160°C : 80°C : 80°C : 300 kW ≥ 3.5 (Z) R600 Centrifugal	<pre>HTHPs over Technology (2018) ent Materials and 15-FY2022) ems, FY2015-FY202 AVEKAWA 200°C 100°C 100°C 23.5 </pre>	I Technologies (1 22) MHI Therma 160°C 80°C 600 kW ≥ 3.5 R1336mzz(Z)	Il Systems 200°C 100°C — ≥ 3.5 —




		Case 1	Case 2	Case 3
Outline	Industry	Chemical	Chemical (Medicine)	Waste Disposal
outime	Process	Distillation of ethanol	Sterilization of chemical container	Drying sewage sludge
	Installed HP	SGH 120 × 5 units	SGH165 × 1 unit	SGH165 × 1 unit
	Installed year	2012	2014	2016
	Installation type	Renewal from steam boiler	Addition to existing steam line	Newly established
User company	Background	 Considered improvement measures Suggestion from engineering company 	Considered improvement measures Suggestion from engineering company	Not yet
	Objective (needed payback period)	 Reduction of running cost (3.5 years with subsidy) 	 Reduction of running cost (3 years without subsidy) 	Not yet
	Initial concerns	 Reliability and durability 	Durability	Not yet
	Effects	Better than planned	As planned	Not yet
	Requests	Nothing	Nothing	Not yet
Engineering	Handling	Easy because unitized	Easy because unitized	Easy because unitized
company	Reason of selection	 Shorter delivery date and better operability compared to MVR 	Effective use of waste heat	Effective use of waste heat
	Requests	 Higher COP Smaller capacity (around half size) 	 Lower initial cost Larger capacity (around 2 times size) 	Lower initial costIncreasing tolerance of
	1 Distilla	Specification for explosion resistance tion Process in Bio	Specification for explosion resistance ethanol Production	water quality Simpler drain piping 1
	1 Distilla Outline of Ir	ition Process in Bio		Simpler drain piping
Case 1	-	ition Process in Bio	-ethanol Production Process and Appl	Simpler drain piping
Industry	Outline of Ir Chemistry	Ition Process in Bio	-ethanol Productio	Simpler drain piping
Case 1 Industry Production	Outline of Ir Chemistry Bio-ethanc	Ition Process in Bio	-ethanol Production Process and Appl Feed Material • Sugar beet	Simpler drain piping
Case 1 Industry Production User compa	Outline of Ir Chemistry Bio-ethanc Iny Hokkaido B	Ition Process in Bio	-ethanol Production Process and Appl Feed Material Sugar beet • Non-standard wheat	Simpler drain piping
Case 1 Industry Production User compa Installed yea	Outline of Ir Chemistry Bio-ethanc any Hokkaido E ar 2012	Ition Process in Bio	-ethanol Production Process and Appl Feed Material • Sugar beet	Simpler drain piping
Case 1 Industry Production User compa	Outline of Ir Chemistry Bio-ethanc Iny Hokkaido B	Ition Process in Bio	-ethanol Production Process and Appl Feed Material • Sugar beet • Non-standard wheat Concentration of Ethanol 10%	 Simpler drain piping Cation Fermentation 99.5%
Case 1 Industry Production User compa Installed yea	Outline of Ir Chemistry Bio-ethanc any Hokkaido E ar 2012	Ition Process in Bio	-ethanol Production Process and Appl Feed Material Sugar beet Non-standard wheat Concentration of Ethanol	Simpler drain piping
Case 1 Industry Production User compa Installed yea Process	Outline of Ir Chemistry Bio-ethanc any Hokkaido E ar 2012 Distillation Steam (120	Installation Installation Installation Installation Installation Installation Installation Installation	-ethanol Production Process and Appl Feed Material • Sugar beet • Non-standard wheat Concentration of Ethanol 10%	 Simpler drain piping Cation Fermentation 99.5%
Case 1 Industry Production User compa Installed yea Process Application Engineering	Outline of Ir Chemistry Bio-ethanc any Hokkaido E ar 2012 Distillation Steam (120 ; Japan Cher Machinery	Installation Installation Installation Installation Installation Installation Installation Installation	-ethanol Production Process and Appl Feed Material Liquefaction • Sugar beet • Non-standard wheat Concentration of Ethanol 10%	 Simpler drain piping Cation Fermentation 99.5%
Case 1 Industry Production User compa Installed yea Process Application Engineering company	Outline of Ir Chemistry Bio-ethanc any Hokkaido E ar 2012 Distillation Steam (120 ; Japan Cher Machinery	Ition Process in Bio Istallation I Bioethanol Co., Ltd. of ethanol D°C) mical Engineering & Co., Ltd. , Ltd. (KOBELCO) 5 units) :: R245fa	-ethanol Production Process and Appl Feed Material Liquefaction • Sugar beet • Non-standard wheat Concentration of Ethanol 10%	 Simpler drain piping Cation Fermentation 99.5%



To engine	ering companies for distillat	ion and concentration	
	Company A	Company B	Company C
Strong field	Distillation of alcohol	Concentration of food and beverage	Water treatment
Estimated steam unit price	N/A	4,000 JPY/ton	5,000 JPY/ton
Estimated payback period	 Basically 3 years Sometimes 5 years with subsidy 	 Basically 3 years Sometimes 5 years with subsidy 	 2 years for semiconductor industry up to 5 years for food industry
Comparison to competing technologies	 MVR applied for large capacity (alcohol production: 200 kL/day) Double-effect evaporator for middle capacity HP considered for small capacity (alcohol production: 20–50 kL/day) 	 MVR applied (steam 5–20 ton/h) SGH120 has the similar economic effect with double-effect evaporator. HP will be considered for the processes MVR cannot apply: concentration of hydrofluoric acid, hydrochloric acid, etc. 	 MVR considered first of all HP will be considered for the processes MVR cannot apply: processes which may splash solvent or need high Boiling Point Rising (BPR), etc.
Market trends	Number of newly-established or renewal of distillation columns:	 Intermediary material of food or medicine (ex. molasses) 	 Increasing concentration needs for waste liquid treatment
in Japan	only several units/year in Japan • Small sized distillation columns use steam of several hundreds kg/h Distillation Process i	n Dextran Productio	 Increasing factories of Zero Liquid Discharge (ZLD): concentration, drying, solidification
in Japan	Small sized distillation columns use steam of several hundreds kg/h Distillation Process		Discharge (ZLD): concentration, drying, solidification
in Japan IEFI Case 4 Ou	Small sized distillation columns use steam of several hundreds kg/h Distillation Process in utline of Installation		Discharge (ZLD): concentration, drying, solidification
in Japan IEPI Case 4 Ou Industry	Small sized distillation columns use steam of several hundreds kg/h Distillation Process i utline of Installation Chemistry		Discharge (ZLD): concentration, drying, solidification
in Japan IEPI Case 4 1 1 Ou Industry Production	Small sized distillation columns use steam of several hundreds kg/h Distillation Process in utline of Installation	Process a	Discharge (ZLD): concentration, drying, solidification
in Japan Case 4 1 1 Ou Industry Production User company	Small sized distillation columns use steam of several hundreds kg/h Distillation Process i tline of Installation Chemistry Dextran (Polysaccharides)	Feed Material Fermentation	Discharge (ZLD): concentration, drying, solidification
Industry Production User company Installed year	Small sized distillation columns use steam of several hundreds kg/h Distillation Process i utline of Installation Chemistry Dextran (Polysaccharides) Meito Sangyo Co., Ltd.	Process a Feed Material • Sugars Collection of Vacuum	Discharge (ZLD): concentration, drying, solidification ON nd Application Collection of Precipitation • Distillation of methanol • Distillation of methanol
in Japan Case 4 1 1 Ou Industry Production User company Installed year Process	Small sized distillation columns use steam of several hundreds kg/h Distillation Process in thine of Installation Chemistry Dextran (Polysaccharides) Meito Sangyo Co., Ltd. 2017	Feed Material Fermentation	Discharge (ZLD): concentration, drying, solidification ON nd Application Collection of Precipitation • Distillation of methanol • Distillation of methanol
in Japan Case 4 1 1 Case 4 1 1 Ou Industry Production User company Installed year Process Application Engineering	Small sized distillation columns use steam of several hundreds kg/h Distillation Process i tline of Installation Chemistry Dextran (Polysaccharides) Meito Sangyo Co., Ltd. 2017 Distillation of methanol	Feed Material • Sugars Collection of Precipitation Concentration	Discharge (ZLD): concentration, drying, solidification ON nd Application Collection of Precipitation • Distillation of methanol • Distillation of methanol
in Japan TEPI Case 4 1 Cou Industry Production User company Installed year Process Application Engineering company	Small sized distillation columns use steam of several hundreds kg/h Distillation Process i ttine of Installation Chemistry Dextran (Polysaccharides) Meito Sangyo Co., Ltd. 2017 Distillation of methanol Hot water (90°C)	Feed Material • Sugars Collection of Precipitation • Distillation of methanol	Discharge (ZLD): concentration, drying, solidification ON nd Application Collection of Precipitation • Distillation of methanol • Distillation of methanol
in Japan	Small sized distillation columns use steam of several hundreds kg/h Distillation Process i tline of Installation Chemistry Dextran (Polysaccharides) Meito Sangyo Co., Ltd. 2017 Distillation of methanol Hot water (90°C) Kimura Chemical Plants Co., Ltd.	Process a Feed Material Fermentation • Sugars Collection of Precipitation • Distillation of methanol	Discharge (ZLD): concentration, drying, solidification ON nd Application Collection of Precipitation • Distillation of methanol • Distillation of methanol

2.1. High-temperature heat pumps in Japan - Potential, development trends and case studies, Takenobu Kaida, CRIEPI

